EconPapers    
Economics at your fingertips  
 

Likelihood inference in some finite mixture models

Xiaohong Chen (), Maria Ponomareva and Elie Tamer

Journal of Econometrics, 2014, vol. 182, issue 1, 87-99

Abstract: Parametric mixture models are commonly used in applied work, especially empirical economics, where these models are often employed to learn for example about the proportions of various types in a given population. This paper examines the inference question on the proportions (mixing probability) in a simple mixture model in the presence of nuisance parameters when sample size is large. It is well known that likelihood inference in mixture models is complicated due to (1) lack of point identification, and (2) parameters (for example, mixing probabilities) whose true value may lie on the boundary of the parameter space. These issues cause the profiled likelihood ratio (PLR) statistic to admit asymptotic limits that differ discontinuously depending on how the true density of the data approaches the regions of singularities where there is lack of point identification. This lack of uniformity in the asymptotic distribution suggests that confidence intervals based on pointwise asymptotic approximations might lead to faulty inferences. This paper examines this problem in details in a finite mixture model and provides possible fixes based on the parametric bootstrap. We examine the performance of this parametric bootstrap in Monte Carlo experiments and apply it to data from Beauty Contest experiments. We also examine small sample inferences and projection methods.

Keywords: Finite mixtures; Parametric bootstrap; Profiled likelihood ratio statistic (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614000694
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Likelihood inference in some finite mixture models (2013) Downloads
Working Paper: Likelihood Inference in Some Finite Mixture Models (2013) Downloads
Working Paper: Likelihood inference in some finite mixture models (2013) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:182:y:2014:i:1:p:87-99

DOI: 10.1016/j.jeconom.2014.04.010

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:182:y:2014:i:1:p:87-99