Consistent estimation with many moment inequalities
Konrad Menzel
Journal of Econometrics, 2014, vol. 182, issue 2, 329-350
Abstract:
In this paper, we consider estimation of the identified set when the number of moment inequalities is large relative to sample size, possibly infinite. Many applications in the recent literature on partially identified problems have this feature, including dynamic games, set-identified IV models, and parameters defined by a continuum of moment inequalities, in particular conditional moment inequalities. We provide a generic consistency result for criterion-based estimators using an increasing number of unconditional moment inequalities. We then develop more specific results for set estimation subject to conditional moment inequalities: we first derive the fastest possible rate for estimating the sharp identification region under smoothness conditions on the conditional moment functions. We also give rate conditions for inference under local alternatives.
Keywords: Moment inequalities; Many weak moments; Partial identification; Conditional moment inequalities; Set estimation (search for similar items in EconPapers)
JEL-codes: C12 C13 C14 C15 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614001389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:182:y:2014:i:2:p:329-350
DOI: 10.1016/j.jeconom.2014.05.016
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().