Inference in semiparametric binary response models with interval data
Yuanyuan Wan and
Haiqing Xu ()
Journal of Econometrics, 2015, vol. 184, issue 2, 347-360
Abstract:
This paper studies the semiparametric binary response model with interval data investigated by Manski and Tamer (2002). In this partially identified model, we propose a new estimator based on MT’s modified maximum score (MMS) method by introducing density weights to the objective function, which allows us to develop asymptotic properties of the proposed set estimator for inference. We show that the density-weighted MMS estimator converges at a nearly cube-root-n rate. We propose an asymptotically valid inference procedure for the identified region based on subsampling. Monte Carlo experiments provide supports to our inference procedure.
Keywords: Interval data; Semiparametric binary response model; Density weights; U-process (search for similar items in EconPapers)
JEL-codes: C12 C14 C24 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614001948
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:184:y:2015:i:2:p:347-360
DOI: 10.1016/j.jeconom.2014.09.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().