Model averaging estimation of generalized linear models with imputed covariates
Valentino Dardanoni (),
Giuseppe De Luca (),
Salvatore Modica and
Franco Peracchi
Journal of Econometrics, 2015, vol. 184, issue 2, 452-463
Abstract:
We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision trade-off in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our approach.
Keywords: Model averaging; Bayesian averaging of maximum likelihood estimators; Generalized linear models; Missing covariates; Generalized missing-indicator method; SHARE (search for similar items in EconPapers)
JEL-codes: C11 C25 C35 C81 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614001420
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:184:y:2015:i:2:p:452-463
DOI: 10.1016/j.jeconom.2014.06.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().