Closed-form estimation of nonparametric models with non-classical measurement errors
Yingyao Hu and
Yuya Sasaki
Journal of Econometrics, 2015, vol. 185, issue 2, 392-408
Abstract:
This paper proposes closed-form estimators for nonparametric regressions using two measurements with non-classical errors. One (administrative) measurement has location-/scale-normalized errors, but the other (survey) measurement has endogenous errors with arbitrary location and scale. For this setting of data combination, we derive closed-form identification of nonparametric regressions, and practical closed-form estimators that perform well with small samples. Applying this method to NHANES III, we study how obesity explains health care usage. Clinical measurements and self reports of BMI are used as two measurements with normalized errors and endogenous errors, respectively. We robustly find that health care usage increases with obesity.
Keywords: Closed form; Non-classical measurement errors; Nonparametric regressions (search for similar items in EconPapers)
JEL-codes: C14 C21 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614002796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:185:y:2015:i:2:p:392-408
DOI: 10.1016/j.jeconom.2014.11.004
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().