Quantile regression with censoring and endogeneity
Victor Chernozhukov,
Ivan Fernandez-Val () and
Amanda Kowalski
Journal of Econometrics, 2015, vol. 186, issue 1, 201-221
Abstract:
In this paper we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal with censoring, with a control variable approach to incorporate endogenous regressors. The CQIV estimator is obtained in two stages that are nonadditive in the unobservables. The first stage estimates a nonadditive model with infinite dimensional parameters for the control variable, such as a quantile or distribution regression model. The second stage estimates a nonadditive censored quantile regression model for the response variable of interest, including the estimated control variable to deal with endogeneity. For computation, we extend the algorithm for CQR developed by Chernozhukov and Hong (2002) to incorporate the estimation of the control variable. We give generic regularity conditions for asymptotic normality of the CQIV estimator and for the validity of resampling methods to approximate its asymptotic distribution. We verify these conditions for quantile and distribution regression estimation of the control variable. Our analysis covers two-stage (uncensored) quantile regression with nonadditive first stage as an important special case. We illustrate the computation and applicability of the CQIV estimator with a Monte-Carlo numerical example and an empirical application on estimation of Engel curves for alcohol.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (78)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614001717
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Quantile Regression with Censoring and Endogeneity (2014) 
Working Paper: Quantile Regression with Censoring and Endogeneity (2011) 
Working Paper: Quantile regression with censoring and endogeneity (2011) 
Working Paper: Quantile Regression with Censoring and Endogeneity (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:186:y:2015:i:1:p:201-221
DOI: 10.1016/j.jeconom.2014.06.017
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().