Asymptotic analysis of the squared estimation error in misspecified factor models
Alexei Onatski ()
Journal of Econometrics, 2015, vol. 186, issue 2, 388-406
Abstract:
In this paper, we obtain asymptotic approximations to the squared error of the least squares estimator of the common component in large approximate factor models with possibly misspecified number of factors. The approximations are derived under both strong and weak factors asymptotics assuming that the cross-sectional and temporal dimensions of the data are comparable. We develop consistent estimators of these approximations and propose to use them for model comparison and for selection of the number of factors. We show that the estimators of the number of factors that minimize these loss estimators are asymptotically loss efficient in the sense of Shibata (1980), Li (1987), and Shao (1997).
Keywords: Misspecification; Factor model; Number of factors; Loss efficiency (search for similar items in EconPapers)
JEL-codes: C38 C52 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615000408
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:186:y:2015:i:2:p:388-406
DOI: 10.1016/j.jeconom.2015.02.016
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().