EconPapers    
Economics at your fingertips  
 

Nonparametric specification tests for stochastic volatility models based on volatility density

Yang Zu

Journal of Econometrics, 2015, vol. 187, issue 1, 323-344

Abstract: This paper develops a specification test for stochastic volatility models by comparing the nonparametric kernel deconvolution density estimator of an integrated volatility density with its parametric counterpart. L2 distance is used to measure the discrepancy. The asymptotic null distributions of the test statistics are established and the asymptotic power functions are computed. Through Monte Carlo simulations, the size and power properties of the test statistics are studied. The tests are applied to an empirical example.

Keywords: Nonparametric tests; Kernel deconvolution estimator; Stochastic volatility model (search for similar items in EconPapers)
JEL-codes: C12 C14 C58 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615001190
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:187:y:2015:i:1:p:323-344

DOI: 10.1016/j.jeconom.2015.02.045

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:187:y:2015:i:1:p:323-344