A flexible semiparametric forecasting model for time series
Degui Li,
Oliver Linton and
Zudi Lu
Journal of Econometrics, 2015, vol. 187, issue 1, 345-357
Abstract:
In this paper, we propose a semiparametric procedure called the “Model Averaging MArginal Regression” (MAMAR) that is flexible for forecasting of time series. This procedure considers approximating a multivariate regression function by an affine combination of one-dimensional marginal regression functions. The weight parameters involved in the approximation are estimated by least squares on the basis of the first-stage nonparametric kernel estimates of the marginal regressions. Under some mild conditions, we have established asymptotic normality for the estimated weights and the regression function in two cases: Case I considers that the number of the covariates is fixed while Case II allows the number of the covariates depending on the sample size and diverging. As the observations are assumed to be stationary and near epoch dependent, the approach developed is applicable to both the estimation and forecasting issues in time series analysis. Furthermore, the method and result are augmented by a simulation study and illustrated by an application in forecasting the high frequency volatility of the FTSE100 index.
Keywords: Forecasting; Marginal regression; Model averaging; Kernel estimation; Near epoch dependence; Semiparametric estimation (search for similar items in EconPapers)
JEL-codes: C14 C22 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615000500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:187:y:2015:i:1:p:345-357
DOI: 10.1016/j.jeconom.2015.02.025
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().