EconPapers    
Economics at your fingertips  
 

Cross-validation for selecting a model selection procedure

Yongli Zhang and Yuhong Yang

Journal of Econometrics, 2015, vol. 187, issue 1, 95-112

Abstract: While there are various model selection methods, an unanswered but important question is how to select one of them for data at hand. The difficulty is due to that the targeted behaviors of the model selection procedures depend heavily on uncheckable or difficult-to-check assumptions on the data generating process. Fortunately, cross-validation (CV) provides a general tool to solve this problem. In this work, results are provided on how to apply CV to consistently choose the best method, yielding new insights and guidance for potentially vast amount of application. In addition, we address several seemingly widely spread misconceptions on CV.

Keywords: Cross-validation; Cross-validation paradox; Data splitting ratio; Adaptive procedure selection; Information criterion; LASSO; MCP; SCAD (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615000305
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:187:y:2015:i:1:p:95-112

DOI: 10.1016/j.jeconom.2015.02.006

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:187:y:2015:i:1:p:95-112