A new hyperbolic GARCH model
Muyi Li,
Wai Keung Li and
Guodong Li
Journal of Econometrics, 2015, vol. 189, issue 2, 428-436
Abstract:
There are two commonly used hyperbolic GARCH processes, the FIGARCH and HYGARCH processes, in modeling the long-range dependence in volatility. However, the FIGARCH process always has infinite variance, and the HYGARCH model has a more complicated form. This paper builds a simple bridge between a common GARCH model and an integrated GARCH model, and hence a new hyperbolic GARCH model along the lines of FIGARCH models. The new model remedies the drawback of FIGARCH processes by allowing the existence of finite variance as in HYGARCH models, while it has a form nearly as simple as the FIGARCH model. Two inference tools, including the Gaussian QMLE and a portmanteau test for the adequacy of the fitted model, are derived, and an easily implemented test for hyperbolic memory is also constructed. Their finite sample performances are evaluated by simulation experiments, and an empirical example gives further support to our new model.
Keywords: ARCH(∞); Hyperbolic GARCH; Long-range dependence; QMLE (search for similar items in EconPapers)
JEL-codes: C15 C22 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615001128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:189:y:2015:i:2:p:428-436
DOI: 10.1016/j.jeconom.2015.03.034
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().