Root-T consistent density estimation in GARCH models
Aurore Delaigle,
Alexander Meister and
Jeroen Rombouts
Journal of Econometrics, 2016, vol. 192, issue 1, 55-63
Abstract:
We consider a new nonparametric estimator of the stationary density of the logarithm of the volatility of the GARCH(1,1) model. This problem is particularly challenging since this density is still unknown, even in cases where the model parameters are given. Although the volatility variables are only observed with multiplicative independent innovation errors with unknown density, we manage to construct a nonparametric procedure which estimates the log volatility density consistently. By carefully exploiting the specific GARCH dependence structure of the data, our iterative procedure even attains the striking parametric root-T convergence rate. As a by-product of our main results, we also derive new smoothness properties of the stationary density. Using numerical simulations, we illustrate the performance of our estimator, and we provide an application to financial data.
Keywords: Autoregression; Consistency; Convergence rates; Financial econometrics; Nonparametric statistics; Time series (search for similar items in EconPapers)
JEL-codes: C14 C22 C32 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615002614
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:192:y:2016:i:1:p:55-63
DOI: 10.1016/j.jeconom.2015.10.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().