High-dimensional copula-based distributions with mixed frequency data
Dong Hwan Oh and
Andrew Patton
Journal of Econometrics, 2016, vol. 193, issue 2, 349-366
Abstract:
This paper proposes a new model for high-dimensional distributions of asset returns that utilizes mixed frequency data and copulas. The dependence between returns is decomposed into linear and nonlinear components, enabling the use of high frequency data to accurately forecast linear dependence, and a new class of copulas designed to capture nonlinear dependence among the resulting uncorrelated, low frequency, residuals. Estimation of the new class of copulas is conducted using composite likelihood, facilitating applications involving hundreds of variables. In- and out-of-sample tests confirm the superiority of the proposed models applied to daily returns on constituents of the S&P 100 index.
Keywords: High frequency data; Forecasting; Composite likelihood; Nonlinear dependence (search for similar items in EconPapers)
JEL-codes: C32 C51 C58 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407616300707
Full text for ScienceDirect subscribers only
Related works:
Working Paper: High-Dimensional Copula-Based Distributions with Mixed Frequency Data (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:193:y:2016:i:2:p:349-366
DOI: 10.1016/j.jeconom.2016.04.011
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().