Testing super-diagonal structure in high dimensional covariance matrices
Jing He and
Song Chen
Journal of Econometrics, 2016, vol. 194, issue 2, 283-297
Abstract:
The covariance matrices are essential quantities in econometric and statistical applications including portfolio allocation, asset pricing and factor analysis. Testing the entire covariance under high dimensionality endures large variability and causes a dilution of the signal-to-noise ratio and hence a reduction in the power. We consider a more powerful test procedure that focuses on testing along the super-diagonals of the high dimensional covariance matrix, which can infer more accurately on the structure of the covariance. We show that the test is powerful in detecting sparse signals and parametric structures in the covariance. The properties of the test are demonstrated by theoretical analyses, simulation and empirical studies.
Keywords: Bandable covariance; High dimensionality; Sparse covariance matrix; Multiple testing (search for similar items in EconPapers)
JEL-codes: C12 C14 G10 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407616300975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:194:y:2016:i:2:p:283-297
DOI: 10.1016/j.jeconom.2016.05.007
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).