Tail dependence measure for examining financial extreme co-movements
Alexandru V. Asimit,
Russell Gerrard,
Yanxi Hou and
Liang Peng
Journal of Econometrics, 2016, vol. 194, issue 2, 330-348
Abstract:
Modeling and forecasting extreme co-movements in financial market is important for conducting stress test in risk management. Asymptotic independence and asymptotic dependence behave drastically different in modeling such co-movements. For example, the impact of extreme events is usually overestimated whenever asymptotic dependence is wrongly assumed. On the other hand, the impact is seriously underestimated whenever the data is misspecified as asymptotic independent. Therefore, distinguishing between asymptotic independence/dependence scenarios is very informative for any decision-making and especially in risk management. We investigate the properties of the limiting conditional Kendall’s tau which can be used to detect the presence of asymptotic independence/dependence. We also propose nonparametric estimation for this new measure and derive its asymptotic limit. A simulation study shows good performances of the new measure and its combination with the coefficient of tail dependence proposed by Ledford and Tawn (1996, 1997). Finally, applications to financial and insurance data are provided.
Keywords: Asymptotic dependence and independence; Copula; Extreme co-movement; Kendall’s tau; Measure of association (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407616301026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:194:y:2016:i:2:p:330-348
DOI: 10.1016/j.jeconom.2016.05.011
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().