Resurrecting weighted least squares
Joseph P. Romano and
Michael Wolf
Journal of Econometrics, 2017, vol. 197, issue 1, 1-19
Abstract:
This paper shows how asymptotically valid inference in regression models based on the weighted least squares (WLS) estimator can be obtained even when the model for reweighting the data is misspecified. Like the ordinary least squares estimator, the WLS estimator can be accompanied by heteroskedasticity-consistent (HC) standard errors without knowledge of the functional form of conditional heteroskedasticity. First, we provide rigorous proofs under reasonable assumptions; second, we provide numerical support in favor of this approach. Indeed, a Monte Carlo study demonstrates attractive finite-sample properties compared to the status quo, in terms of both estimation and inference.
Keywords: Conditional heteroskedasticity; HC standard errors; Weighted least squares (search for similar items in EconPapers)
JEL-codes: C12 C13 C21 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440761630197X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:197:y:2017:i:1:p:1-19
DOI: 10.1016/j.jeconom.2016.10.003
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().