Estimation of average treatment effects with panel data: Asymptotic theory and implementation
Kathleen T. Li and
David R. Bell
Journal of Econometrics, 2017, vol. 197, issue 1, 65-75
Abstract:
Hsiao, Ching and Wan (2012) propose a novel method to estimate the average treatment effect using panel data. In this paper, we accomplish the following: (i) We relax some of the distributional assumptions made in HCW and show that the HCW method works for a much wider range of data generating processes; (ii) We derive the asymptotic distribution of HCW’s average treatment effect estimator which facilitates inference; (iii) When there exists a large number of control units, we propose using the LASSO method to select control units. We show that the LASSO method is computationally more efficient compared to conventional model selection criteria. Moreover, the LASSO method leads to more accurate out-of-sample prediction results than many commonly adopted approaches such as BIC, AIC, AICC and the leave-many-out cross validation methods (Du and Zhang, 2015).
Keywords: Average treatment effects; Asymptotic distribution; LASSO method (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (62)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407616302019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:197:y:2017:i:1:p:65-75
DOI: 10.1016/j.jeconom.2016.01.011
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().