Bayesian mode regression using mixtures of triangular densities
Chi-san Ho,
Paul Damien and
Stephen Walker
Journal of Econometrics, 2017, vol. 197, issue 2, 273-283
Abstract:
Bayesian semiparametric models for mean and median regressions abound, but a void for mode regressions exists. We fill this gap by nonparametrically modeling the error distribution in such regressions that entails constructing prior distributions on densities which exhibit flexibility, while fixing the mode at 0. Such priors exist when constraining the mean and median but, to our knowledge, there is none for the mode. Our solution with mixtures of triangular distributions results in a conditionally conjugate prior on the space of unimodal, untruncated, convex densities. Consistency properties of the resulting modal estimators are studied, followed by simulated and real data illustrations.
Keywords: Bayesian inference; Conditional modes; Convex densities; Mixture distributions (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407616302184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:197:y:2017:i:2:p:273-283
DOI: 10.1016/j.jeconom.2016.11.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().