Fixed-effects dynamic spatial panel data models and impulse response analysis
Kunpeng Li
Journal of Econometrics, 2017, vol. 198, issue 1, 102-121
Abstract:
Real data often have complicated correlations over cross section and time. Such correlations are of particular interests in empirical studies. This paper considers using high order spatial lags and high order time lags to model complicated correlations over cross section and time. We propose to use the quasi maximum likelihood (QML) method to estimate the model. We establish the asymptotic theory of the quasi maximum likelihood estimator (QMLE), including the consistency and limiting distribution, under large N and large T setup, where N denotes the number of individuals and T the number of time periods. We investigate the problem of estimating impulse response functions and the associated (1−α)-confidence intervals. Average direct, indirect and total impacts are defined along the same spirits of LeSage and Pace (2009) under the dynamic spatial panel data setup. The estimation and inferential theory for the three impacts are studied. Model selection issue is also considered. Monte Carlo simulations confirm our theoretical results and show that the QMLE after bias correction has good finite sample performance.
Keywords: Dynamic spatial models; Panel data models; Quasi maximum likelihood estimation; Impulse response analysis; Confidence intervals; Model selection (search for similar items in EconPapers)
JEL-codes: C31 C33 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617300167
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:198:y:2017:i:1:p:102-121
DOI: 10.1016/j.jeconom.2017.02.001
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().