Misclassification in binary choice models
Bruce D. Meyer and
Nikolas Mittag
Journal of Econometrics, 2017, vol. 200, issue 2, 295-311
Abstract:
Bias from misclassification of binary dependent variables can be pronounced. We examine what can be learned from such contaminated data. First, we derive the asymptotic bias in parametric models allowing misclassification to be correlated with observables and unobservables. Simulations and validation data show that the bias formulas are accurate in finite samples and in most situations imply attenuation. Second, we examine the bias in a prototypical application. Erroneously restricting the covariance of misclassification and covariates aggravates the bias for all estimators we examine. Estimators that relax this restriction perform well if a model of misclassification or validation data is available.
Keywords: Measurement error; Binary choice models; Program take-up; Food stamps (search for similar items in EconPapers)
JEL-codes: C35 C81 H53 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617300982
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:200:y:2017:i:2:p:295-311
DOI: 10.1016/j.jeconom.2017.06.012
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().