Efficient two-step estimation via targeting
David T. Frazier and
Eric Renault
Journal of Econometrics, 2017, vol. 201, issue 2, 212-227
Abstract:
The standard description of two-step extremum estimation amounts to plugging-in a first-step estimator of nuisance parameters to simplify the optimization problem and then deducing a user friendly, but potentially inefficient, estimator for the parameters of interest. In this paper, we consider a more general setting of two-step estimation where we do not necessarily have ‘nuisance parameters’ but rather awkward occurrences of the parameters of interest. The efficiency problem associated with two-step estimators in this context is more difficult than with standard nuisance parameters as even if the true unknown value of the parameters were plugged-in to alleviate the awkward occurrences of the parameters, the resulting second-step estimator may not be efficient. In addition, standard approaches to restore efficiency for two-step procedures may not work due to a consistency issue. To alleviate this potential issue, we propose a new computationally simple two-step estimation procedure that relies on targeting and penalization to enforce consistency, with the second-step estimators maintaining asymptotic efficiency. We compare this new method with existing iterative methods in the framework of copula models and asset pricing models. Simulation results illustrate that this new method performs better than existing iterative procedures and is (nearly) computationally equivalent.
Keywords: Targeting; Penalization; Multivariate time series models; Asset pricing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617301549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:201:y:2017:i:2:p:212-227
DOI: 10.1016/j.jeconom.2017.08.004
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().