EconPapers    
Economics at your fingertips  
 

Mixed-scale jump regressions with bootstrap inference

Jia Li, Viktor Todorov, George Tauchen () and Rui Chen

Journal of Econometrics, 2017, vol. 201, issue 2, 417-432

Abstract: We develop an efficient mixed-scale estimator for jump regressions using high-frequency asset returns. A fine time scale is used to accurately identify the locations of large rare jumps in the explanatory variables such as the price of the market portfolio. A coarse scale is then used in the estimation in order to attenuate the effect of trading frictions in the dependent variable such as the prices of potentially less liquid assets. The proposed estimator has a non-standard asymptotic distribution that cannot be made asymptotically pivotal via studentization. We propose a novel bootstrap procedure for feasible inference and justify its asymptotic validity. We show that the bootstrap provides an automatic higher-order asymptotic approximation by accounting for the sampling variation in estimates of nuisance quantities that are used in efficient estimation. The Monte Carlo analysis indicates good finite-sample performance of the general specification test and confidence intervals based on the bootstrap. We apply the method to a high-frequency panel of Dow stock prices together with the market index defined by the S&P 500 index futures over the period 2007–2014. We document remarkable temporal stability in the way that stocks react to market jumps. However, this relationship for many of the stocks in the sample is significantly noisier and more unstable during sector-specific jump events.

Keywords: Bootstrap; High-frequency data; Jumps; Regression; Semimartingale; Specification test; Stochastic volatility (search for similar items in EconPapers)
JEL-codes: C51 C52 G12 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617301690
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:201:y:2017:i:2:p:417-432

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-09-30
Handle: RePEc:eee:econom:v:201:y:2017:i:2:p:417-432