Nonparametric identification and estimation of sample selection models under symmetry
Songnian Chen,
Yahong Zhou and
Yuanyuan Ji
Journal of Econometrics, 2018, vol. 202, issue 2, 148-160
Abstract:
Under a conditional mean restriction Das et al. (2003) considered nonparametric estimation of sample selection models. However, their method can only identify the outcome regression function up to a constant. In this paper we strengthen the conditional mean restriction to a symmetry restriction under which selection biases due to selection on unobservables can be eliminated through proper matching of propensity scores; consequently we are able to identify and obtain consistent estimators for the average treatment effects and the structural regression functions. The results from a simulation study suggest that our estimators perform satisfactorily.
Keywords: Sample selection; Nonparametric estimation; Symmetry (search for similar items in EconPapers)
JEL-codes: C13 C14 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617301938
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:202:y:2018:i:2:p:148-160
DOI: 10.1016/j.jeconom.2017.09.004
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().