EconPapers    
Economics at your fingertips  
 

Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity

Eunju Hwang and Dong Wan Shin

Journal of Econometrics, 2018, vol. 202, issue 2, 178-195

Abstract: Under the two important modern financial market features of noise and non-synchronicity for multiple assets, for consistent estimators of the integrated covariations, we adopt the two-time scale average realized volatility matrix (ARVM) which is a matrix extension of the two-time scale realized volatilities of Zhang et al. (2005). An asymptotic normal theory is provided for the two-time scale ARVM and resulting realized covariations. The asymptotic normality is not directly applicable in practice to construct statistical methods owning to nuisance parameters. To bypass the nuisance parameter problem, two-stage stationary bootstrapping is proposed. We establish consistencies of the bootstrap distributions, and construct confidence intervals and hypothesis tests for the integrated covariance, regression coefficient and correlation coefficient. The validity of the stationary bootstrap for the high frequency heterogeneous returns is proved by showing that there exist parameters of the stationary bootstrap blocks so that the bootstrap consistencies hold. The proposed bootstrap methods extend the i.i.d. bootstrapping methods for realized covariations by Dovonon et al. (2013), that are confined to synchronous noise-free sampling. For high frequency noisy asynchronous samples, a Monte-Carlo experiment shows better finite sample performances of the proposed stationary bootstrap methods based on the two-time scale ARVM estimator than the wild blocks of blocks bootstrap methods of Hounyo (2017), based on pre-averaged truncated estimator.

Keywords: Market microstructure noise; Non-synchronous trading; Realized covariations; Two-time scale estimator; Stationary bootstrap; High frequency data (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617302099
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:202:y:2018:i:2:p:178-195

DOI: 10.1016/j.jeconom.2017.10.001

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:202:y:2018:i:2:p:178-195