A Bayesian approach to estimation of dynamic models with small and large number of heterogeneous players and latent serially correlated states
A. Ronald Gallant,
Han Hong and
Ahmed Khwaja
Journal of Econometrics, 2018, vol. 203, issue 1, 19-32
Abstract:
We propose a Bayesian approach to estimating dynamic models that can have state variables that are latent, serially correlated, and heterogeneous. Our approach employs sequential importance sampling and is based on deriving an unbiased estimate of the likelihood within a Metropolis chain. Under fairly weak regularity conditions unbiasedness guarantees that the stationary density of the chain is the exact posterior, not an approximation. Results are verified by Monte Carlo simulation using two examples. The first is a dynamic game of entry involving a small number of firms whose heterogeneity is based on their current costs due to feedback through capacity constraints arising from past entry. The second is an Ericson and Pakes (1995) style game with a large number of firms whose heterogeneity is based on the quality of their products with firms competing through investment in product quality that affects their market share and profitability. Our approach facilitates estimation of dynamic games with either small or large number of players whose heterogeneity is determined by latent state variables, discrete or continuous, that are subject to endogenous feedback from past actions.
Keywords: Dynamic games; Partially observed state; Heterogeneous agents; Endogenous state; Serially correlated state; Particle filter (search for similar items in EconPapers)
JEL-codes: C51 C52 E00 G12 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617302336
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:203:y:2018:i:1:p:19-32
DOI: 10.1016/j.jeconom.2017.04.004
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().