Sieve maximum likelihood estimation of the spatial autoregressive Tobit model
Xingbai Xu and
Lung-Fei Lee
Journal of Econometrics, 2018, vol. 203, issue 1, 96-112
Abstract:
This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection.
Keywords: Spatial autoregressive model; Tobit model; Sieve maximum likelihood estimation; Near-epoch dependence; Social network (search for similar items in EconPapers)
JEL-codes: C14 C21 C24 C63 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617302385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:203:y:2018:i:1:p:96-112
DOI: 10.1016/j.jeconom.2017.10.008
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().