A unified approach to volatility estimation in the presence of both rounding and random market microstructure noise
Yingying Li,
Zhiyuan Zhang and
Yichu Li
Journal of Econometrics, 2018, vol. 203, issue 2, 187-222
Abstract:
Widely used volatility estimation methods mainly consider one of the following two simple microstructure noise models: random additive noise on log prices, or pure rounding errors. Apparently in real data these two types of noise co-exist. In this paper, we discover a common feature of these two types of noise and propose a unified volatility estimation approach in the presence of both rounding and random noise. Our data-driven method enjoys superior properties in terms of bias and convergence rate. We establish feasible central limit theorems and show their superior performance via simulations. Empirical studies show clear advantages of our method when applied to both stocks data and currency exchange data.
Keywords: High-frequency data; Rounding errors; Market microstructure noise; Integrated volatility; Realized volatility (search for similar items in EconPapers)
JEL-codes: C14 C22 G12 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617302294
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:203:y:2018:i:2:p:187-222
DOI: 10.1016/j.jeconom.2017.11.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().