Nonparametric heteroskedasticity in persistent panel processes: An application to earnings dynamics
Irene Botosaru and
Yuya Sasaki
Journal of Econometrics, 2018, vol. 203, issue 2, 283-296
Abstract:
This paper considers a dynamic panel model where a latent state variable follows a unit root process with nonparametric heteroskedasticity. We develop constructive nonparametric identification and estimation of the skedastic function. Applying this method to the Panel Survey of Income Dynamics (PSID) in the framework of earnings dynamics, we found that workers with lower pre-recession permanent earnings had higher earnings risk during the three most recent recessions.
Keywords: Conditional heteroskedasticity; Nonparametric identification; Earnings risk (search for similar items in EconPapers)
JEL-codes: C14 C23 E24 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617302427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:203:y:2018:i:2:p:283-296
DOI: 10.1016/j.jeconom.2017.11.010
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().