Consistent estimation of linear regression models using matched data
Masayuki Hirukawa and
Artem Prokhorov
Journal of Econometrics, 2018, vol. 203, issue 2, 344-358
Abstract:
Economists often use matched samples, especially when dealing with earnings data where a number of missing observations need to be imputed. In this paper, we demonstrate that the ordinary least squares estimator of the linear regression model using matched samples is inconsistent and has a non-standard convergence rate to its probability limit. If only a few variables are used to impute the missing data, then it is possible to correct for the bias. We propose two semiparametric bias-corrected estimators and explore their asymptotic properties. The estimators have an indirect-inference interpretation, and they attain the parametric convergence rate when the number of matching variables is no greater than four. Monte Carlo simulations confirm that the bias correction works very well in such cases.
Keywords: Bias correction; Indirect inference; Linear regression; Matching estimation; Measurement error bias (search for similar items in EconPapers)
JEL-codes: C13 C14 C31 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407617302464
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:203:y:2018:i:2:p:344-358
DOI: 10.1016/j.jeconom.2017.07.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().