Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions
Scott E. Atkinson,
Daniel Primont and
Mike Tsionas
Journal of Econometrics, 2018, vol. 204, issue 2, 131-146
Abstract:
Researchers employ the directional distance function (DDF) to estimate multiple-input and multiple-output production, firm inefficiency, and productivity growth. We relax restrictive assumptions by computing optimal directions subject to profit maximization and cost minimization, correct for the potential endogeneity of inputs and outputs, estimate latent prices for bad outputs, measure firms’ responses to shadow prices rather than actual prices, and introduce an unobserved productivity term into the DDF. For an unbalanced panel of U.S. electric utilities, a model assuming profit-maximization outperforms one assuming cost-minimization, while lagged productivity and energy price have the greatest effect on productivity.
Keywords: Bayesian; Directional distance; Productivity; Bad outputs; Latent prices; Efficiency; Optimal directions; Shadow prices (search for similar items in EconPapers)
JEL-codes: C11 C33 D24 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618300162
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:204:y:2018:i:2:p:131-146
DOI: 10.1016/j.jeconom.2017.12.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().