EconPapers    
Economics at your fingertips  
 

Portfolio optimization based on stochastic dominance and empirical likelihood

Thierry Post, Selçuk Karabatı and Stelios Arvanitis

Journal of Econometrics, 2018, vol. 206, issue 1, 167-186

Abstract: This study develops a portfolio optimization method based on the Stochastic Dominance (SD) decision criterion and the Empirical Likelihood (EL) estimation method. SD and EL share a distribution-free assumption framework which allows for dynamic and non-Gaussian multivariate return distributions. The SD/EL method can be implemented using a two-stage procedure which first elicits the implied probabilities using Convex Optimization and subsequently constructs the optimal portfolio using Linear Programming. The solution asymptotically dominates the benchmark and optimizes the goal function in probability, for a class of weakly dependent processes. A Monte Carlo simulation experiment illustrates the improvement in estimation precision using a set of conservative moment conditions about common factors in small samples. In an application to equity industry momentum strategies, SD/EL yields important out-of-sample performance improvements relative to heuristic diversification, Mean–Variance optimization, and a simple ‘plug-in’ approach.

Keywords: Stochastic dominance; Empirical likelihood; Portfolio optimization; Momentum strategies (search for similar items in EconPapers)
JEL-codes: C61 D81 G11 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618300824
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:206:y:2018:i:1:p:167-186

DOI: 10.1016/j.jeconom.2018.01.011

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:206:y:2018:i:1:p:167-186