Testing for randomness in a random coefficient autoregression model
Lajos Horvath and
Lorenzo Trapani
Journal of Econometrics, 2019, vol. 209, issue 2, 338-352
Abstract:
We propose a test to discern between an ordinary autoregressive model, and a random coefficient one. To this end, we develop a full-fledged estimation theory for the variances of the idiosyncratic innovation and of the random coefficient, based on a two-stage WLS approach. Our results hold irrespective of whether the series is stationary or nonstationary, and, as an immediate result, they afford the construction of a test for ”relevant” randomness. Further, building on these results, we develop a randomised test statistic for the null that the coefficient is non-random, as opposed to the alternative of a standard RCA(1) model. Monte Carlo evidence shows that the test has the correct size and very good power for all cases considered.
Keywords: Random coefficient autoregression; WLS estimator; Randomised test (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619300090
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Testing for randomness in a random coefficient autoregression model (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:209:y:2019:i:2:p:338-352
DOI: 10.1016/j.jeconom.2019.01.005
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().