EconPapers    
Economics at your fingertips  
 

Forecasting using random subspace methods

Tom Boot and Didier Nibbering

Journal of Econometrics, 2019, vol. 209, issue 2, 391-406

Abstract: Random subspace methods are a new approach to obtain accurate forecasts in high-dimensional regression settings. Forecasts are constructed by averaging over forecasts from many submodels generated by random selection or random Gaussian weighting of predictors. This paper derives upper bounds on the asymptotic mean squared forecast error of these strategies, which show that the methods are particularly suitable for macroeconomic forecasting. An empirical application to the FRED-MD data confirms the theoretical findings, and shows random subspace methods to outperform competing methods on key macroeconomic indicators.

Keywords: Dimension reduction; Forecasting; Random subspace (search for similar items in EconPapers)
JEL-codes: C32 C38 C53 C55 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619300235
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:209:y:2019:i:2:p:391-406

DOI: 10.1016/j.jeconom.2019.01.009

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:209:y:2019:i:2:p:391-406