Achieving shrinkage in a time-varying parameter model framework
Angela Bitto and
Sylvia Frühwirth-Schnatter
Journal of Econometrics, 2019, vol. 210, issue 1, 75-97
Abstract:
Shrinkage for time-varying parameter (TVP) models is investigated within a Bayesian framework, with the aim to automatically reduce time-varying parameters to static ones, if the model is overfitting. This is achieved through placing the double gamma shrinkage prior on the process variances. An efficient Markov chain Monte Carlo scheme is developed, exploiting boosting based on the ancillarity-sufficiency interweaving strategy. The method is applicable both to TVP models for univariate as well as multivariate time series. Applications include a TVP generalized Phillips curve for EU area inflation modeling and a multivariate TVP Cholesky stochastic volatility model for joint modeling of the returns from the DAX-30 index.
Keywords: Bayesian inference; Bayesian Lasso; Double gamma prior; Hierarchical priors; Kalman filter; Log predictive density scores; Normal–gamma prior; Sparsity; State space model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (69)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618302070
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:210:y:2019:i:1:p:75-97
DOI: 10.1016/j.jeconom.2018.11.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().