Estimation of longrun variance of continuous time stochastic process using discrete sample
Ye Lu and
Joon Y. Park
Journal of Econometrics, 2019, vol. 210, issue 2, 236-267
Abstract:
This paper develops the methodology and asymptotic theory for the estimation of longrun variance of continuous time process. We analyze the asymptotic bias and variance of the longrun variance estimator in continuous time, and provide the optimal bandwidth balancing them off and minimizing the asymptotic mean squared error. In the paper, we present not only how to consistently estimate the longrun variance of continuous time process, but also how to choose bandwidth optimally with data dependent procedures, using discrete samples. Our framework is also useful to analyze the high frequency behaviors of usual longrun variance estimators for discrete time series. In particular, we show that they all diverge to infinity as the sampling frequency increases. The relevance and usefulness of our continuous time framework and asymptotic theory are demonstrated by illustration and simulation.
Keywords: Continuous time model; Longrun variance estimator; Kernel estimation; Bandwidth selection (search for similar items in EconPapers)
JEL-codes: C13 C22 (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618302203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:210:y:2019:i:2:p:236-267
DOI: 10.1016/j.jeconom.2018.04.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).