EconPapers    
Economics at your fingertips  
 

Is the FDA too conservative or too aggressive?: A Bayesian decision analysis of clinical trial design

Leah Isakov, Andrew Lo () and Vahid Montazerhodjat

Journal of Econometrics, 2019, vol. 211, issue 1, 117-136

Abstract: Implicit in the drug-approval process is a host of decisions—target patient population, control group, primary endpoint, sample size, follow-up period, etc.—all of which determine the trade-off between Type I and Type II error. We explore the application of Bayesian decision analysis (BDA) to minimize the expected cost of drug approval, where the relative costs of the two types of errors are calibrated using U.S. Burden of Disease Study 2010 data. The results for conventional fixed-sample randomized clinical-trial designs suggest that for terminal illnesses with no existing therapies such as pancreatic cancer, the standard threshold of 2.5% is substantially more conservative than the BDA-optimal threshold of 23.9% to 27.8%. For relatively less deadly conditions such as prostate cancer, 2.5% is more risk-tolerant or aggressive than the BDA-optimal threshold of 1.2% to 1.5%. We compute BDA-optimal sizes for 25 of the most lethal diseases and show how a BDA-informed approval process can incorporate all stakeholders’ views in a systematic, transparent, internally consistent, and repeatable manner.

Keywords: Clinical trial design; Drug-approval process; FDA; Bayesian decision analysis; Adaptive design (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618302380
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Is the FDA Too Conservative or Too Aggressive?: A Bayesian Decision Analysis of Clinical Trial Design (2015) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:211:y:2019:i:1:p:117-136

DOI: 10.1016/j.jeconom.2018.12.009

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:211:y:2019:i:1:p:117-136