Bayesian nonparametric sparse VAR models
Monica Billio,
Roberto Casarin and
Luca Rossini
Journal of Econometrics, 2019, vol. 212, issue 1, 97-115
Abstract:
High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.
Keywords: Bayesian nonparametrics; Bayesian model selection; Connectedness; Large vector autoregression; Multilayer networks; Network communities; Shrinkage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619300776
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Bayesian nonparametric sparse VAR models (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:212:y:2019:i:1:p:97-115
DOI: 10.1016/j.jeconom.2019.04.022
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().