Nonparametric assessment of hedge fund performance
Caio Almeida,
Kym Ardison and
René Garcia
Journal of Econometrics, 2020, vol. 214, issue 2, 349-378
Abstract:
We propose a new class of performance measures for Hedge Fund (HF) returns based on a family of empirically identifiable stochastic discount factors (SDFs). The SDF-based measures incorporate no-arbitrage pricing restrictions and naturally embed information about higher-order mixed moments between HF and benchmark factors returns. We provide a full asymptotic theory for our SDF estimators to test for the statistical significance of each fund’s performance and for the relevance of individual benchmark factors within each proposed measure. We apply our methodology to a panel of 4815 individual hedge funds. Our empirical analysis reveals that fewer funds have a statistically significant positive alpha compared to the Jensen’s alpha obtained by the traditional linear regression approach. Moreover, the funds’ rankings vary considerably between the two approaches. Performance also varies between the members of our family because of a different fund exposure to higher-order moments of the benchmark factors, highlighting the potential heterogeneity across investors in evaluating performance.
Keywords: Hedge funds; Admissible performance measures; Nonparametric estimation; Higher-order moments (search for similar items in EconPapers)
JEL-codes: C14 C58 G12 G13 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619301617
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Nonparametric Assessment of Hedge Fund Performance (2020)
Working Paper: Nonparametric Assessment of Hedge Fund Performance (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:214:y:2020:i:2:p:349-378
DOI: 10.1016/j.jeconom.2019.08.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().