Estimating permanent price impact via machine learning
R. Philip
Journal of Econometrics, 2020, vol. 215, issue 2, 414-449
Abstract:
In this paper, we show that vector auto-regression (VAR) models, which are commonly used to estimate permanent price impact, are misspecified and can produce conflicting and incorrect inferences when the price impact function is nonlinear. We propose an alternative method to estimate permanent price impact by modifying a reinforcement learning (RL) framework. Our approach assumes the data is stationary and Markov, but is otherwise unrestrictive. We obtain empirical estimates for our model using an iterative learning rule and demonstrate that our model captures nonlinearities and makes correct inferences.
Keywords: Price impact; Information content of a trade; Machine learning; Reinforcement learning (search for similar items in EconPapers)
JEL-codes: C45 C58 G14 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619302052
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:215:y:2020:i:2:p:414-449
DOI: 10.1016/j.jeconom.2019.10.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().