Robust causality test of infinite variance processes
Fumiya Akashi,
Masanobu Taniguchi and
Anna Clara Monti
Journal of Econometrics, 2020, vol. 216, issue 1, 235-245
Abstract:
This paper develops a robust causality test for time series with infinite variance innovation processes. First, we introduce a measure of dependence for vector nonparametric linear processes, and derive the asymptotic distribution of the test statistic by Taniguchi et al. (1996) in the infinite variance case. Second, we construct a weighted version of the generalized empirical likelihood (GEL) test statistic, called the self-weighted GEL statistic in the time domain. The limiting distribution of the self-weighted GEL test statistic is shown to be the usual chi-squared one regardless of whether the model has finite variance or not. Some simulation experiments illustrate satisfactory finite sample performances of the proposed test.
Keywords: Granger causality; Nonparametric hypothesis testing; Generalized empirical likelihood; Self-weighting (search for similar items in EconPapers)
JEL-codes: C12 C32 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762030021X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:216:y:2020:i:1:p:235-245
DOI: 10.1016/j.jeconom.2020.01.016
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().