EconPapers    
Economics at your fingertips  
 

Multiscale clustering of nonparametric regression curves

Michael Vogt and Oliver Linton

Journal of Econometrics, 2020, vol. 216, issue 1, 305-325

Abstract: In a wide range of modern applications, one observes a large number of time series rather than only a single one. It is often natural to suppose that there is some group structure in the observed time series. When each time series is modeled by a nonparametric regression equation, one may in particular assume that the observed time series can be partitioned into a small number of groups whose members share the same nonparametric regression function. We develop a bandwidth-free clustering method to estimate the unknown group structure from the data. More precisely speaking, we construct multiscale estimators of the unknown groups and their unknown number which are free of classical bandwidth or smoothing parameters. In the theoretical part of the paper, we analyze the statistical properties of our estimators. Our theoretical results are derived under general conditions which allow the data to be dependent both in time series direction and across different time series. The technical analysis of the paper is complemented by simulated and real-data examples.

Keywords: Clustering of nonparametric curves; Nonparametric regression; Multiscale statistics; Multiple time series (search for similar items in EconPapers)
JEL-codes: C14 C38 C55 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620300269
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Multiscale clustering of nonparametric regression curves (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:216:y:2020:i:1:p:305-325

DOI: 10.1016/j.jeconom.2020.01.020

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:econom:v:216:y:2020:i:1:p:305-325