EconPapers    
Economics at your fingertips  
 

High-frequency factor models and regressions

Yacine Ait-Sahalia, Ilze Kalnina and Dacheng Xiu

Journal of Econometrics, 2020, vol. 216, issue 1, 86-105

Abstract: We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all components of the model, including idiosyncratic volatility and idiosyncratic jumps. Our empirical analysis investigates the largest dataset in the high-frequency literature. First, we use all traded stocks from NYSE, AMEX, and NASDAQ stock markets for 1996–2017 to construct the five Fama–French factors and the momentum factor at the 5-minute frequency. Second, we document the key empirical properties across all the stocks and the new factors, and apply the nonparametric time series regression model with the new high-frequency Fama–French factors. We find that this factor model is effective in explaining the systematic component of the risk of individual stocks. In addition, we provide evidence that idiosyncratic jumps are related to idiosyncratic events such as earnings disappointments.

Keywords: Factor model; Time-varying betas; Fama–French factors; Idiosyncratic risk; Big data (search for similar items in EconPapers)
JEL-codes: C13 C14 C55 C58 G01 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620300129
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:216:y:2020:i:1:p:86-105

DOI: 10.1016/j.jeconom.2020.01.007

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:econom:v:216:y:2020:i:1:p:86-105