Adaptive inference on pure spatial models
Jungyoon Lee and
Peter M. Robinson
Journal of Econometrics, 2020, vol. 216, issue 2, 375-393
Abstract:
In a general class of semiparametric pure spatial models (having no explanatory variables) allowing nonlinearity in the parameter and the weight matrix, we propose adaptive tests and estimates which are asymptotically efficient in the presence of unknown, nonparametric distributional form. Feasibility of adaptive estimation is verified and its efficiency improvement over Gaussian pseudo maximum likelihood is shown to be either less than, or more than, for models with explanatory variables, depending on properties of the spatial weight matrix. An adaptive Lagrange Multiplier testing procedure for lack of spatial dependence is proposed and this, and our adaptive parameter estimate, are extended to cover regression with spatially correlated errors.
Keywords: Efficient test; Adaptive estimation; Spatial models (search for similar items in EconPapers)
JEL-codes: C12 C13 C14 C21 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619302234
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:216:y:2020:i:2:p:375-393
DOI: 10.1016/j.jeconom.2019.10.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().