Inference in second-order identified models
Prosper Dovonon,
Alastair R. Hall and
Frank Kleibergen
Journal of Econometrics, 2020, vol. 218, issue 2, 346-372
Abstract:
We explore the local power properties of different test statistics for conducting inference in moment condition models that only identify the parameters locally to second order. We consider the conventional Wald and LM statistics, and also the Generalized Anderson–Rubin (GAR) statistic (Anderson and Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright, 2000), KLM statistic (Kleibergen, 2002; Kleibergen, 2005) and the GMM extension of Moreira (2003) (GMM-M) conditional likelihood ratio statistic. The GAR, KLM and GMM-M statistics are so-called “identification robust” since their (conditional) limiting distribution is the same under first-order, weak and therefore also second order identification. For inference about the model specification, we consider the identification-robust J statistic (Kleibergen, 2005), and the GAR statistic. Interestingly, we find that the limiting distribution of the Wald statistic under local alternatives not only depends on the distance to the null hypothesis but also on the convergence rate of the Jacobian. We specifically analyse two empirically relevant models with second order identification. In the panel autoregressive model of order one, our analysis indicates that the Wald test of a unit root value of the autoregressive parameter has better power compared to the corresponding GAR test which, in turn, dominates the KLM, GMM-M and LM tests. For the conditionally heteroskedastic factor model, we compare Kleibergen (2005) J and the GAR statistics to Hansen (1982) overidentifying restrictions test (previously analysed in this context by Dovonon and Renault, 2013) and find the power ranking depends on the sample size. Collectively, our results suggest that tests with meaningful power can be conducted in second-order identified models.
Keywords: Generalized Method of Moments estimation; First-order identification failure; Identification-robust inference (search for similar items in EconPapers)
JEL-codes: C1 C12 C23 C58 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620301408
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Inference in Second-Order Identified Models (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:218:y:2020:i:2:p:346-372
DOI: 10.1016/j.jeconom.2020.04.020
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().