Estimation and inference of change points in high-dimensional factor models
Jushan Bai,
Xu Han and
Yutang Shi
Journal of Econometrics, 2020, vol. 219, issue 1, 66-100
Abstract:
In this paper, we consider the estimation of break points in high-dimensional factor models where the unobserved factors are estimated by principal component analysis (PCA). The factor loading matrix is assumed to have a structural break at an unknown time. We establish the conditions under which the least squares (LS) estimator is consistent for the break date. Our consistency result holds for both large and small breaks. We also find the LS estimator’s asymptotic distribution. Simulation results confirm that the break date can be accurately estimated by the LS even if the magnitudes of breaks are small. In two empirical applications, we implement the method to estimate break points in the U.S. stock market and U.S. macroeconomy, respectively.
Keywords: Structural changes; High-dimensional factor models; Break point inference (search for similar items in EconPapers)
JEL-codes: C12 C22 C38 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620301172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:219:y:2020:i:1:p:66-100
DOI: 10.1016/j.jeconom.2019.08.013
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().