Jackknife empirical likelihood for inequality constraints on regular functionals
Ruxin Chen and
Rami V. Tabri
Journal of Econometrics, 2021, vol. 221, issue 1, 68-77
Abstract:
Empirical likelihood is effective in many different practical situations involving moment equality and/or inequality restrictions. However, in applications with nonlinear functionals of the underlying distribution, it becomes computationally more difficult to implement. We propose the use of jackknife empirical likelihood (Jing et al., 2009) to circumvent the computational difficulties with nonlinear inequality constraints and establish the chi-bar-square distribution as the limiting null distribution of the resulting empirical likelihood-ratio statistic, where a finite number of inequalities on functionals that are regular in the sense of Hoeffding (1948), defines the null hypothesis. The class of regular functionals includes many nonlinear functionals that arise in practice and has moments as a special case. To overcome the implementation challenges with this non-pivotal asymptotic null distribution, we propose an empirical likelihood bootstrap procedure that is valid with uniformity. Finally, we investigate the finite-sample properties of the bootstrap procedure using Monte Carlo simulations and find that the results are promising.
Keywords: Jackknife empirical likelihood; Bootstrap test; Inequality restrictions; U-statistics (search for similar items in EconPapers)
JEL-codes: C12 C14 C21 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620300373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:221:y:2021:i:1:p:68-77
DOI: 10.1016/j.jeconom.2019.11.007
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().