Testing high-dimensional covariance matrices under the elliptical distribution and beyond
Xinxin Yang,
Xinghua Zheng and
Jiaqi Chen
Journal of Econometrics, 2021, vol. 221, issue 2, 409-423
Abstract:
We develop tests for high-dimensional covariance matrices under a generalized elliptical model. Our tests are based on a central limit theorem for linear spectral statistics of the sample covariance matrix based on self-normalized observations. For testing sphericity, our tests neither assume specific parametric distributions nor involve the kurtosis of data. More generally, we can test against any non-negative definite matrix that can even be not invertible. As an interesting application, we illustrate in empirical studies that our tests can be used to test uncorrelatedness among idiosyncratic returns.
Keywords: Covariance matrix; High-dimension; Elliptical model; Linear spectral statistics; Central limit theorem (search for similar items in EconPapers)
JEL-codes: C12 C55 C58 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620302384
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:221:y:2021:i:2:p:409-423
DOI: 10.1016/j.jeconom.2020.05.017
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().