EconPapers    
Economics at your fingertips  
 

Detection of units with pervasive effects in large panel data models

George Kapetanios, Mohammad Pesaran and S. Reese

Journal of Econometrics, 2021, vol. 221, issue 2, 510-541

Abstract: The importance of units that influence a large number of other units in a network has become increasingly recognized in the literature. In this paper we propose a new method to detect such pervasive units by basing our analysis on unit-specific residual error variances subject to suitable adjustments due to the multiple testing issues involved. Accordingly, a sequential multiple testing (SMT) procedure is proposed, which allows identification of pervasive units (if any) without a priori knowledge of the interconnections amongst cross-section units or availability of a short list of candidate units to search over. The proposed method is applicable even if the cross-section dimension exceeds the time series dimension, and most importantly it could end up with none of the units selected as pervasive when this is in fact the case. The SMT procedure exhibits satisfactory small-sample performance in Monte Carlo simulations and compares well relative to existing approaches. We apply the SMT detection method to sectoral indices of U.S. industrial production, U.S. house price changes by states, and the rates of change of real GDP and real equity prices across the world’s largest economies.

Keywords: Pervasive units; Factor models; Systemic risk; Multiple testing; Sequential procedure; Cross-sectional dependence (search for similar items in EconPapers)
JEL-codes: C18 C23 C55 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620302141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:221:y:2021:i:2:p:510-541

DOI: 10.1016/j.jeconom.2020.05.001

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:econom:v:221:y:2021:i:2:p:510-541