EconPapers    
Economics at your fingertips  
 

Model averaging prediction for time series models with a diverging number of parameters

Jun Liao, Guohua Zou, Yan Gao and Xinyu Zhang

Journal of Econometrics, 2021, vol. 223, issue 1, 190-221

Abstract: An important problem with the model averaging approach is the choice of weights. In this paper, a generalized Mallows model averaging (GMMA) criterion for choosing weights is developed in the context of an infinite order autoregressive (AR(∞)) process. The GMMA method adapts to the circumstances in which the dimensions of candidate models can be large and increase with the sample size. The GMMA method is shown to be asymptotically optimal in the sense of achieving the lowest out-of-sample mean squared prediction error (MSPE) for both the independent-realization and the same-realization predictions, which, as a byproduct, solves a conjecture put forward by Hansen (2008) that the well-known Mallows model averaging criterion from Hansen (2007) is asymptotically optimal for predicting the future of a time series. The rate of the GMMA-based weight estimator tending to the optimal weight vector minimizing the independent-realization MSPE is derived as well. Both simulation experiment and real data analysis illustrate the merits of the GMMA method in the prediction of an AR(∞) process.

Keywords: Asymptotic optimality; Autoregressive process; Consistency; Mallows criterion; Model averaging (search for similar items in EconPapers)
JEL-codes: C52 C53 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620303493
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:223:y:2021:i:1:p:190-221

DOI: 10.1016/j.jeconom.2020.10.004

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:223:y:2021:i:1:p:190-221