EconPapers    
Economics at your fingertips  
 

An improved bootstrap test for restricted stochastic dominance

Thomas M. Lok and Rami V. Tabri

Journal of Econometrics, 2021, vol. 224, issue 2, 371-393

Abstract: Bootstrap Testing for restricted stochastic dominance of a pre-specified order between two distributions is of interest in many areas of economics. This paper develops a new method for improving the performance of such tests that employ a moment selection procedure: tilting the empirical distribution in the moment selection procedure. We propose that the amount of tilting be chosen to maximize the empirical likelihood subject to the restrictions of the null hypothesis, which are a continuum of unconditional moment inequality conditions. We characterize sets of population distributions on which a modified test is (i) asymptotically equivalent to its non-modified version to first-order, and (ii) superior to its non-modified version according to local power when the sample size is large enough. We report simulation results that show the modified versions of leading tests are noticeably less conservative than their non-modified counterparts and have improved power. Finally, an empirical example is discussed to illustrate the proposed method.

Keywords: Bootstrap test; Contact set; Empirical likelihood; Semi-infinite program; Restricted stochastic dominance (search for similar items in EconPapers)
JEL-codes: C12 C13 C14 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620303730
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:224:y:2021:i:2:p:371-393

DOI: 10.1016/j.jeconom.2019.08.016

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:224:y:2021:i:2:p:371-393